Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness
We study the Hermite operator H=−Δ+|x|2 in Rd and its fractional powers Hβ, β>0 in phase space. Namely, we represent functions f via the so-called short-time Fourier, alias Fourier-Wigner or Bargmann transform Vgf (g being a fixed window function), and we measure their regularity and decay by mea...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-12, Vol.392, p.107995, Article 107995 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Hermite operator H=−Δ+|x|2 in Rd and its fractional powers Hβ, β>0 in phase space. Namely, we represent functions f via the so-called short-time Fourier, alias Fourier-Wigner or Bargmann transform Vgf (g being a fixed window function), and we measure their regularity and decay by means of mixed Lebesgue norms in phase space of Vgf, that is in terms of membership to modulation spaces Mp,q, 0 |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.107995 |