Structure of minimal 2-spheres of constant curvature in the complex hyperquadric

In this paper, the singular-value decomposition theory of complex matrices is explored to study constantly curved 2-spheres minimal in both CPn and the hyperquadric of CPn. The moduli space of all those noncongruent ones is introduced, which can be described by certain complex symmetric matrices mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-11, Vol.391, p.107967, Article 107967
Hauptverfasser: Chi, Quo-Shin, Xie, Zhenxiao, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the singular-value decomposition theory of complex matrices is explored to study constantly curved 2-spheres minimal in both CPn and the hyperquadric of CPn. The moduli space of all those noncongruent ones is introduced, which can be described by certain complex symmetric matrices modulo an appropriate group action. Using this description, many examples, such as constantly curved holomorphic 2-spheres of higher degree, nonhomogenous minimal 2-spheres of constant curvature, etc., are constructed. Uniqueness is proven for the totally real constantly curved 2-sphere minimal in both the hyperquadric and CPn.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107967