Real topological Hochschild homology and the Segal conjecture

We give a new proof, independent of Lin's theorem, of the Segal conjecture for the cyclic group of order two. The key input is a calculation, as a Hopf algebroid, of the Real topological Hochschild homology of F2. This determines the E2-page of the descent spectral sequence for the map NF2→F2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-08, Vol.387, p.107839, Article 107839
Hauptverfasser: Hahn, Jeremy, Wilson, Dylan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new proof, independent of Lin's theorem, of the Segal conjecture for the cyclic group of order two. The key input is a calculation, as a Hopf algebroid, of the Real topological Hochschild homology of F2. This determines the E2-page of the descent spectral sequence for the map NF2→F2, where NF2 is the C2-equivariant Hill–Hopkins–Ravenel norm of F2. The E2-page represents a new upper bound on the RO(C2)-graded homotopy of NF2, from which the Segal conjecture is an immediate corollary.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107839