First explicit constrained Willmore minimizers of non-rectangular conformal class
We study immersed tori in 3-space minimizing the Willmore energy in their respective conformal class. Within the rectangular conformal classes (0,b) with b∼1 the homogeneous tori fb are known to be the unique constrained Willmore minimizers (up to invariance). In this paper we generalize this result...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-08, Vol.386, p.107804, Article 107804 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study immersed tori in 3-space minimizing the Willmore energy in their respective conformal class. Within the rectangular conformal classes (0,b) with b∼1 the homogeneous tori fb are known to be the unique constrained Willmore minimizers (up to invariance). In this paper we generalize this result and show that the candidates constructed in [14] are indeed constrained Willmore minimizers in certain non-rectangular conformal classes (a,b). Difficulties arise from the fact that these minimizers are non-degenerate for a≠0 but smoothly converge to the degenerate homogeneous tori fb as a⟶0. As a byproduct of our arguments, we show that the minimal Willmore energy ω(a,b) is real analytic and concave in a∈(0,ab) for some ab>0 and fixed b∼1, b≠1. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.107804 |