Impossibility of almost extension

Let (X,‖⋅‖X),(Y,‖⋅‖Y) be normed spaces with dim⁡(X)=n. Bourgain's almost extension theorem asserts that for any ε>0, if N is an ε-net of the unit sphere of X and f:N→Y is 1-Lipschitz, then there exists an O(1)-Lipschitz F:X→Y such that ‖F(a)−f(a)‖Y≲nε for all a∈N. We prove that this is optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-06, Vol.384, p.107761, Article 107761
1. Verfasser: Naor, Assaf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (X,‖⋅‖X),(Y,‖⋅‖Y) be normed spaces with dim⁡(X)=n. Bourgain's almost extension theorem asserts that for any ε>0, if N is an ε-net of the unit sphere of X and f:N→Y is 1-Lipschitz, then there exists an O(1)-Lipschitz F:X→Y such that ‖F(a)−f(a)‖Y≲nε for all a∈N. We prove that this is optimal up to lower order factors, i.e., sometimes maxa∈N⁡‖F(a)−f(a)‖Y≳n1−o(1)ε for everyO(1)-Lipschitz F:X→Y. This improves Bourgain's lower bound of maxa∈N⁡‖F(a)−f(a)‖Y≳ncε for some 0
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107761