Impossibility of almost extension
Let (X,‖⋅‖X),(Y,‖⋅‖Y) be normed spaces with dim(X)=n. Bourgain's almost extension theorem asserts that for any ε>0, if N is an ε-net of the unit sphere of X and f:N→Y is 1-Lipschitz, then there exists an O(1)-Lipschitz F:X→Y such that ‖F(a)−f(a)‖Y≲nε for all a∈N. We prove that this is optim...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-06, Vol.384, p.107761, Article 107761 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (X,‖⋅‖X),(Y,‖⋅‖Y) be normed spaces with dim(X)=n. Bourgain's almost extension theorem asserts that for any ε>0, if N is an ε-net of the unit sphere of X and f:N→Y is 1-Lipschitz, then there exists an O(1)-Lipschitz F:X→Y such that ‖F(a)−f(a)‖Y≲nε for all a∈N. We prove that this is optimal up to lower order factors, i.e., sometimes maxa∈N‖F(a)−f(a)‖Y≳n1−o(1)ε for everyO(1)-Lipschitz F:X→Y. This improves Bourgain's lower bound of maxa∈N‖F(a)−f(a)‖Y≳ncε for some 0 |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.107761 |