On Willems' conjecture on Brauer character degrees
In 2005 Wolfgang Willems put forward a conjecture proposing a lower bound for the sum of squares of the degrees of the irreducible p-Brauer characters of a finite group G. We prove this conjecture for the prime p=2. For this we rely on the recent reduction of Willems' conjecture to a question o...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2021-03, Vol.380, p.107609, Article 107609 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2005 Wolfgang Willems put forward a conjecture proposing a lower bound for the sum of squares of the degrees of the irreducible p-Brauer characters of a finite group G. We prove this conjecture for the prime p=2. For this we rely on the recent reduction of Willems' conjecture to a question on quasi-simple groups by Tong-Viet. We also verify the conditions of Tong-Viet for certain families of finite quasi-simple groups and odd primes. On the way we obtain lower bounds for the number of regular semisimple conjugacy classes in finite groups of Lie type. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2021.107609 |