On Willems' conjecture on Brauer character degrees

In 2005 Wolfgang Willems put forward a conjecture proposing a lower bound for the sum of squares of the degrees of the irreducible p-Brauer characters of a finite group G. We prove this conjecture for the prime p=2. For this we rely on the recent reduction of Willems' conjecture to a question o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-03, Vol.380, p.107609, Article 107609
1. Verfasser: Malle, Gunter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 2005 Wolfgang Willems put forward a conjecture proposing a lower bound for the sum of squares of the degrees of the irreducible p-Brauer characters of a finite group G. We prove this conjecture for the prime p=2. For this we rely on the recent reduction of Willems' conjecture to a question on quasi-simple groups by Tong-Viet. We also verify the conditions of Tong-Viet for certain families of finite quasi-simple groups and odd primes. On the way we obtain lower bounds for the number of regular semisimple conjugacy classes in finite groups of Lie type.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107609