A KK-theoretic perspective on deformed Dirac operators

We study the index theory of a class of perturbed Dirac operators on non-compact manifolds of the form D+ic(X), where c(X) is a Clifford multiplication operator by an orbital vector field with respect to the action of a compact Lie group. Our main result is that the index class of such an operator f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-03, Vol.380, p.107604, Article 107604
Hauptverfasser: Loizides, Yiannis, Rodsphon, Rudy, Song, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the index theory of a class of perturbed Dirac operators on non-compact manifolds of the form D+ic(X), where c(X) is a Clifford multiplication operator by an orbital vector field with respect to the action of a compact Lie group. Our main result is that the index class of such an operator factors as a KK-product of certain KK-theory classes defined by D and X. As a corollary we obtain the excision and cobordism-invariance properties first established by Braverman. An index theorem of Braverman relates the index of D+ic(X) to the index of a transversally elliptic operator. We explain how to deduce this theorem using a recent index theorem for transversally elliptic operators due to Kasparov.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107604