Discretization of integrals on compact metric measure spaces

Let μ be a Borel probability measure on a compact path-connected metric space (X,ρ) for which there exist constants c,β≥1 such that μ(B)≥crβ for every open ball B⊂X of radius r>0. For a class of Lipschitz functions Φ:[0,∞)→R that are piecewise within a finite-dimensional subspace of continuous fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2021-04, Vol.381, p.107602, Article 107602
Hauptverfasser: Buhmann, Martin D., Dai, Feng, Niu, Yeli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let μ be a Borel probability measure on a compact path-connected metric space (X,ρ) for which there exist constants c,β≥1 such that μ(B)≥crβ for every open ball B⊂X of radius r>0. For a class of Lipschitz functions Φ:[0,∞)→R that are piecewise within a finite-dimensional subspace of continuous functions, we prove under certain mild conditions on the metric ρ and the measure μ that for each positive integer N≥2, and each g∈L∞(X,dμ) with ‖g‖∞=1, there exist points y1,…,yN∈X and real numbers λ1,…,λN such that for any x∈X,|∫XΦ(ρ(x,y))g(y)dμ(y)−∑j=1NλjΦ(ρ(x,yj))|⩽CN−12−32βlog⁡N, where the constant C>0 is independent of N and g. In the case when X is the unit sphere Sd of Rd+1 with the usual geodesic distance, we also prove that the constant C here is independent of the dimension d. Our estimates are better than those obtained from the standard Monte Carlo methods, which typically yield a weaker upper bound N−12log⁡N.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2021.107602