Hadamard products and moments of random vectors

We derive sharp comparison inequalities between weak and strong moments of random vectors in arbitrary finite dimensional Banach space. As an application, we show that the p-summing constant of any finite dimensional Banach space is upper bounded, up to a universal constant, by the p-summing constan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-12, Vol.375, p.107414, Article 107414
Hauptverfasser: Latała, Rafał, Nayar, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive sharp comparison inequalities between weak and strong moments of random vectors in arbitrary finite dimensional Banach space. As an application, we show that the p-summing constant of any finite dimensional Banach space is upper bounded, up to a universal constant, by the p-summing constant of the Hilbert space of the same dimension. We also apply our result to the concentration of measure theory for log-concave random vectors in Euclidean spaces.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107414