Hadamard products and moments of random vectors
We derive sharp comparison inequalities between weak and strong moments of random vectors in arbitrary finite dimensional Banach space. As an application, we show that the p-summing constant of any finite dimensional Banach space is upper bounded, up to a universal constant, by the p-summing constan...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-12, Vol.375, p.107414, Article 107414 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive sharp comparison inequalities between weak and strong moments of random vectors in arbitrary finite dimensional Banach space. As an application, we show that the p-summing constant of any finite dimensional Banach space is upper bounded, up to a universal constant, by the p-summing constant of the Hilbert space of the same dimension. We also apply our result to the concentration of measure theory for log-concave random vectors in Euclidean spaces. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107414 |