Irreducible projective representations of the alternating group which remain irreducible in characteristic 2
For any finite group G it is an interesting question to ask which ordinary irreducible representations of G remain irreducible in a given characteristic p. We answer this question for p=2 when G is the proper double cover of the alternating group. As a key ingredient in the proof, we prove a formula...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-11, Vol.374, p.107340, Article 107340 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any finite group G it is an interesting question to ask which ordinary irreducible representations of G remain irreducible in a given characteristic p. We answer this question for p=2 when G is the proper double cover of the alternating group. As a key ingredient in the proof, we prove a formula for the decomposition numbers in Rouquier blocks of double covers of symmetric groups, in terms of Schur P-functions. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107340 |