Heat kernel estimates and parabolic Harnack inequalities for symmetric Dirichlet forms
In this paper, we consider the following symmetric Dirichlet forms on a metric measure space (M,d,μ):E(f,g)=E(c)(f,g)+∫M×M(f(x)−f(y))(g(x)−g(y))J(dx,dy), where E(c) is a strongly local symmetric bilinear form and J(dx,dy) is a symmetric Radon measure on M×M. Under general volume doubling condition o...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-11, Vol.374, p.107269, Article 107269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following symmetric Dirichlet forms on a metric measure space (M,d,μ):E(f,g)=E(c)(f,g)+∫M×M(f(x)−f(y))(g(x)−g(y))J(dx,dy), where E(c) is a strongly local symmetric bilinear form and J(dx,dy) is a symmetric Radon measure on M×M. Under general volume doubling condition on (M,d,μ) and some mild assumptions on scaling functions, we establish stability results for upper bounds of heat kernel (resp. two-sided heat kernel estimates) in terms of the jumping kernels, the cut-off Sobolev inequalities, and the Faber-Krahn inequalities (resp. the Poincaré inequalities). We also obtain characterizations of parabolic Harnack inequalities. Our results apply to symmetric diffusions with jumps even when the underlying spaces have walk dimensions larger than 2. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107269 |