Moment maps, strict linear precision, and maximum likelihood degree one
We study the moment maps of a smooth projective toric variety. In particular, we characterize when the moment map coming from the quotient construction is equal to a weighted Fubini-Study moment map. This leads to an investigation into polytopes with strict linear precision, and in the process we us...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-08, Vol.370, p.107233, Article 107233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the moment maps of a smooth projective toric variety. In particular, we characterize when the moment map coming from the quotient construction is equal to a weighted Fubini-Study moment map. This leads to an investigation into polytopes with strict linear precision, and in the process we use results from and find remarkable connections between Symplectic Geometry, Geometric Modeling, Algebraic Statistics, and Algebraic Geometry. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107233 |