Moment maps, strict linear precision, and maximum likelihood degree one

We study the moment maps of a smooth projective toric variety. In particular, we characterize when the moment map coming from the quotient construction is equal to a weighted Fubini-Study moment map. This leads to an investigation into polytopes with strict linear precision, and in the process we us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-08, Vol.370, p.107233, Article 107233
Hauptverfasser: Clarke, Patrick, Cox, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the moment maps of a smooth projective toric variety. In particular, we characterize when the moment map coming from the quotient construction is equal to a weighted Fubini-Study moment map. This leads to an investigation into polytopes with strict linear precision, and in the process we use results from and find remarkable connections between Symplectic Geometry, Geometric Modeling, Algebraic Statistics, and Algebraic Geometry.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107233