The FFRT property of two-dimensional normal graded rings and orbifold curves

We study the finite F-representation type (abbr. FFRT) property of a two-dimensional normal graded ring R in characteristic p>0, using notions from the theory of algebraic stacks. Given a graded ring R, we consider an orbifold curve C, which is a root stack over the smooth curve C=ProjR, such tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-08, Vol.370, p.107215, Article 107215
Hauptverfasser: Hara, Nobuo, Ohkawa, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the finite F-representation type (abbr. FFRT) property of a two-dimensional normal graded ring R in characteristic p>0, using notions from the theory of algebraic stacks. Given a graded ring R, we consider an orbifold curve C, which is a root stack over the smooth curve C=ProjR, such that R is the section ring associated with a line bundle L on C. The FFRT property of R is then rephrased with respect to the Frobenius push-forwards F⁎e(Li) on the orbifold curve C. As a result, we see that if the singularity of R is not log terminal, then R has FFRT only in exceptional cases where the characteristic p divides a weight of C.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107215