n-level density of the low-lying zeros of primitive Dirichlet L-functions
Katz and Sarnak conjectured that the statistics of low-lying zeros of various family of L-functions matched with the scaling limit of eigenvalues from the random matrix theory. In this paper we confirm this statistic for a family of primitive Dirichlet L-functions matches up with corresponding stati...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-08, Vol.369, p.107185, Article 107185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Katz and Sarnak conjectured that the statistics of low-lying zeros of various family of L-functions matched with the scaling limit of eigenvalues from the random matrix theory. In this paper we confirm this statistic for a family of primitive Dirichlet L-functions matches up with corresponding statistic in the random unitary ensemble, in a range that includes the off-diagonal contribution. To estimate the n-level density of zeros of the L-functions, we use the asymptotic large sieve method developed by Conrey, Iwaniec and Soundararajan. For the random matrix side, a formula from Conrey and Snaith allows us to solve the matchup problem. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2020.107185 |