n-level density of the low-lying zeros of primitive Dirichlet L-functions

Katz and Sarnak conjectured that the statistics of low-lying zeros of various family of L-functions matched with the scaling limit of eigenvalues from the random matrix theory. In this paper we confirm this statistic for a family of primitive Dirichlet L-functions matches up with corresponding stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-08, Vol.369, p.107185, Article 107185
Hauptverfasser: Chandee, Vorrapan, Lee, Yoonbok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Katz and Sarnak conjectured that the statistics of low-lying zeros of various family of L-functions matched with the scaling limit of eigenvalues from the random matrix theory. In this paper we confirm this statistic for a family of primitive Dirichlet L-functions matches up with corresponding statistic in the random unitary ensemble, in a range that includes the off-diagonal contribution. To estimate the n-level density of zeros of the L-functions, we use the asymptotic large sieve method developed by Conrey, Iwaniec and Soundararajan. For the random matrix side, a formula from Conrey and Snaith allows us to solve the matchup problem.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107185