The weight complex functor is symmetric monoidal

Bondarko's (strong) weight complex functor is a triangulated functor from Voevodsky's triangulated category of motives to the homotopy category of chain complexes of classical Chow motives. Its construction is valid for any dg enhanced triangulated category equipped with a weight structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-07, Vol.368, p.107145, Article 107145
1. Verfasser: Aoki, Ko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bondarko's (strong) weight complex functor is a triangulated functor from Voevodsky's triangulated category of motives to the homotopy category of chain complexes of classical Chow motives. Its construction is valid for any dg enhanced triangulated category equipped with a weight structure. In this paper we consider weight complex functors in the setting of stable symmetric monoidal ∞-categories. We prove that the weight complex functor is symmetric monoidal under a natural compatibility assumption. To prove this result, we develop additive and stable symmetric monoidal variants of the ∞-categorical Yoneda embedding, which may be of independent interest.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2020.107145