Minimal surfaces from infinitesimal deformations of circle packings
We study circle packings with the combinatorics of a triangulated disk in the plane and parametrize deformations of circle packings in terms of vertex rotation and cross ratios. We show that there is a Weierstrass representation formula relating infinitesimal deformations of circle packings to discr...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-03, Vol.362, p.106939, Article 106939 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study circle packings with the combinatorics of a triangulated disk in the plane and parametrize deformations of circle packings in terms of vertex rotation and cross ratios. We show that there is a Weierstrass representation formula relating infinitesimal deformations of circle packings to discrete minimal surfaces of Koebe type. Furthermore, every minimal surface of Koebe type can be extended naturally to a discrete minimal surface of general type. In this way, discrete minimal surfaces via Steiner's formula are unified. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2019.106939 |