A differential graded model for derived analytic geometry

We give a formulation for derived analytic geometry built from commutative differential graded algebras equipped with entire functional calculus on their degree 0 part, a theory well-suited to developing shifted Poisson structures and quantisations. In the complex setting, we show that this formulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2020-01, Vol.360, p.106922, Article 106922
1. Verfasser: Pridham, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a formulation for derived analytic geometry built from commutative differential graded algebras equipped with entire functional calculus on their degree 0 part, a theory well-suited to developing shifted Poisson structures and quantisations. In the complex setting, we show that this formulation recovers equivalent derived analytic spaces and stacks to those coming from Lurie's structured topoi. In non-Archimedean settings, there is a similar comparison, but for derived dagger analytic spaces and stacks, based on overconvergent functions.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2019.106922