Effective counting on translation surfaces
We prove an effective version of a celebrated result of Eskin and Masur: for any SL2(R)-invariant locus L of translation surfaces, there exists κ>0, such that for almost every translation surface in L, the number of saddle connections with holonomy vector of length at most T, grows like cT2+O(T2−...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2020-01, Vol.360, p.106890, Article 106890 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove an effective version of a celebrated result of Eskin and Masur: for any SL2(R)-invariant locus L of translation surfaces, there exists κ>0, such that for almost every translation surface in L, the number of saddle connections with holonomy vector of length at most T, grows like cT2+O(T2−κ). We also provide effective versions of counting in sectors and in ellipses. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2019.106890 |