Stratification and duality for homotopical groups
We generalize Quillen's F-isomorphism theorem, Quillen's stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over C⁎(BG,Fp) is stratified and costr...
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2019-10, Vol.354, p.106733, Article 106733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize Quillen's F-isomorphism theorem, Quillen's stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over C⁎(BG,Fp) is stratified and costratified for a large class of p-local compact groups G including compact Lie groups, connected p-compact groups, and p-local finite groups, thereby giving a support-theoretic classification of all localizing and colocalizing subcategories of this category. Moreover, we prove that p-compact groups admit a homotopical form of Gorenstein duality. |
---|---|
ISSN: | 0001-8708 1090-2082 |
DOI: | 10.1016/j.aim.2019.106733 |