Stratification and duality for homotopical groups

We generalize Quillen's F-isomorphism theorem, Quillen's stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over C⁎(BG,Fp) is stratified and costr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) 2019-10, Vol.354, p.106733, Article 106733
Hauptverfasser: Barthel, Tobias, Castellana, Natàlia, Heard, Drew, Valenzuela, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize Quillen's F-isomorphism theorem, Quillen's stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over C⁎(BG,Fp) is stratified and costratified for a large class of p-local compact groups G including compact Lie groups, connected p-compact groups, and p-local finite groups, thereby giving a support-theoretic classification of all localizing and colocalizing subcategories of this category. Moreover, we prove that p-compact groups admit a homotopical form of Gorenstein duality.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2019.106733