Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia

Water shortage and soil salinization are the key limiting factors in agricultural production of arid and semi-arid regions. Located in western Inner Mongolia of China, the Hetao Irrigation District (HID) is one of the top three largest irrigation districts in China. Irrigation water overuse and high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural water management 2023-03, Vol.277, p.108095, Article 108095
Hauptverfasser: Cao, Zhaodan, Zhu, Tingju, Cai, Ximing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water shortage and soil salinization are the key limiting factors in agricultural production of arid and semi-arid regions. Located in western Inner Mongolia of China, the Hetao Irrigation District (HID) is one of the top three largest irrigation districts in China. Irrigation water overuse and high level of soil salinity have curbed the agricultural productivity, adversely affected farmers’ revenues, and threatened long-term sustainability of irrigated farming in the HID. Nevertheless, opportunities still exist to improve the situation. Irrigation water allocation, salt accumulation and leaching, crop productivity and farming decisions are intrinsically connected and thus require taking a holistic approach to investigate into the interactions among all those factors and devise appropriate technological, management and policy interventions. Towards this goal, we develop an integrated hydro-agro-economic optimization model to reconcile agricultural net revenue, irrigation practices, and environmental sustainability in the HID. Positive Mathematical Programming is used for model calibration to ensure the model can replicate the base year observations of crop acreage, making the model suitable for evaluating alternative scenarios. Scenario analyses are conducted to analyze the effects of water supply reduction, reducing winter irrigation, water-saving irrigation, and crop commodity price change on optimal agricultural water management practices. Results show that water supply reduction without complementary measures increases land fallow, exacerbates soil salinization, and reduces net benefits. Winter irrigation can conserve soil moisture and increase the net salt leaching in the root zone, and a reduction in winter irrigation will incur a benefit loss to the HID. Water-saving irrigation can stabilize planting areas under water shortage but exacerbate soil salinization. Price increase of a cash crop, if it has a large area share, tends to “crowd out” grain crops growing in the same season. These results provide a holistic perspective and useful insights for water management and policy in the HID. •A hydro-agro-economic model is developed for the Hetao Irrigation District in China.•Winter irrigation reduction will incur a benefit loss for the farmers.•Water-saving irrigation is beneficial only when considerable water shortage exists.
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2022.108095