Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis
The rapid population growth and economic development, climate change and irregular rainfall will inevitably intensify the competition of water resources, resulting in the reduction of agricultural irrigation water. In recent years, subsurface drip irrigation (SSDI), as an efficient water-saving irri...
Gespeichert in:
Veröffentlicht in: | Agricultural water management 2022-07, Vol.269, p.107645, Article 107645 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid population growth and economic development, climate change and irregular rainfall will inevitably intensify the competition of water resources, resulting in the reduction of agricultural irrigation water. In recent years, subsurface drip irrigation (SSDI), as an efficient water-saving irrigation technology, has been widely used in crop production, but its effects on crop yield, irrigation water productivity (IWP) and water productivity (WP) vary with field managements, climatic conditions and soil properties. Here, a global meta-analysis of 984 comparisons from 109 publications was carried out to systematically and quantitatively analyze the responses of yield, IWP and WP of crops, vegetables and fruits to SSDI. The results showed that SSDI significantly increased yield, IWP and WP by 5.39%, 6.75% and 3.97% relative to surface drip irrigation (SDI), respectively. The largest percentage increase in yield was observed in crops (6.42%), followed by vegetables (5.29%) and fruits (3.37%). SSDI performed best when crops, vegetables and fruits were planted in the open field, under film mulching, in arid regions ( |
---|---|
ISSN: | 0378-3774 1873-2283 |
DOI: | 10.1016/j.agwat.2022.107645 |