Understanding the increased maize productivity of intercropping systems from interactive scenarios of plant roots and arbuscular mycorrhizal fungi

Abundant evidences have demonstrated that below-ground feedback mediated by crop diversification is essential for enhancing crop productivity. However, there is a knowledge gap about the mechanism underlying intercropping-driven productivity gain from the perspective of interactive scenarios of root...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture, ecosystems & environment ecosystems & environment, 2025-04, Vol.381, p.109450, Article 109450
Hauptverfasser: Wang, Yizhe, Jiang, Pan, Liao, Chaolin, Fei, Jiangchi, Zhang, Yuping, Xiangmin, Rong, Peng, Jianwei, Luo, Gongwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abundant evidences have demonstrated that below-ground feedback mediated by crop diversification is essential for enhancing crop productivity. However, there is a knowledge gap about the mechanism underlying intercropping-driven productivity gain from the perspective of interactive scenarios of root traits and arbuscular mycorrhizal fungi (AMF). Herein, a ten-year field experiment was employed to reveal the differences of rhizosphere AMF community and root functional traits between maize monocropping and intercropping systems (maize-peanut, maize-soybean, maize-gingelly, and maize-sweet potato), as well as their relationships with maize productivity. AMF community traits were identified by high-throughput sequencing combined with bioinformatics and ecological analysis. Plant biomass, carbon (C) and nutrient content and accumulation were considered as productivity indicators, and root activity and morphology were considered as root functional traits. Compared with monocropping system, intercropping systems showed higher maize biomass, C accumulation and nutrient uptake (P 
ISSN:0167-8809
DOI:10.1016/j.agee.2024.109450