J-V characteristics of plasmonic photovoltaics with embedded conical and cylindrical metallic nanoparticles

Plasmonic photovoltaics (PVs) are promising structures that improve thin-film photovoltaics performance, where optical absorption is improved via embedding metallic nanoparticles in the PV’s active layer to trap the incident optical wave into the photovoltaic cell. The presented work investigates th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electronics and communications 2020-09, Vol.124, p.153326, Article 153326
Hauptverfasser: Yassin, Heba M., Mahran, Sara E., El-Batawy, Yasser M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasmonic photovoltaics (PVs) are promising structures that improve thin-film photovoltaics performance, where optical absorption is improved via embedding metallic nanoparticles in the PV’s active layer to trap the incident optical wave into the photovoltaic cell. The presented work investigates the design of PV with both structures of conical and cylindrical metallic nanoparticles through studying their extinction cross-sections and electric field distributions. Also, the impact of these nanoparticles in silicon PVs on the optical absorption enhancement is investigated. The figure of merit is calculated to compare the presented designs and their performance improvement compared to the conventional PVs. Furthermore, the current density–voltage characteristic of the proposed plasmonic PVs is studied. Also, the impacts of the parameters of the proposed plasmonic PV on J-V characteristics and optical absorption are investigated where all these simulations are done for silicon (Si) PV.
ISSN:1434-8411
DOI:10.1016/j.aeue.2020.153326