A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with Multi-source domains
Fault diagnosis with transfer learning has achieved great attention. However, existing methods mostly focused on single-source-single-target sceneries. In some cases, there may exist multiple source domains. Therefore, a reinforcement ensemble deep transfer learning network (REDTLN) is proposed for...
Gespeichert in:
Veröffentlicht in: | Advanced engineering informatics 2022-01, Vol.51, p.101480, Article 101480 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fault diagnosis with transfer learning has achieved great attention. However, existing methods mostly focused on single-source-single-target sceneries. In some cases, there may exist multiple source domains. Therefore, a reinforcement ensemble deep transfer learning network (REDTLN) is proposed for fault diagnosis with multi-source domains. Firstly, various new kernel maximum mean discrepancies (kMMDs) are used to construct multiple deep transfer learning networks (DTLNs) for single-source-single-target domain adaptation. The differences of kernel functions and source domains can help the DTLNs learn diverse transferable features. Secondly, a new unified metric is designed based on kMMD and diversity measures for unsupervised ensemble learning. Finally, using the unified metric as the reward, a reinforcement learning method is firstly explored to generate an effective combination rule for multi-domain-multi-model reinforcement ensemble. The proposed method is verified with experiment datasets, and the results empirically show its effectiveness and superiority compared with other methods. |
---|---|
ISSN: | 1474-0346 1873-5320 |
DOI: | 10.1016/j.aei.2021.101480 |