Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents
Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulphonate (PEDOT:PSS) ink formulation, InkCG, using b...
Gespeichert in:
Veröffentlicht in: | Additive manufacturing 2023-03, Vol.66, p.103452, Article 103452 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulphonate (PEDOT:PSS) ink formulation, InkCG, using bio-renewable solvents dihydrolevoglucosenone (cyrene) and glycerol carbonate (GC) as an alternative to commonly used dimethyl sulfoxide (DMSO). These green organic co-solvents enhance jetting reliability and long-term stability of the ink and improve electrical properties of the deposited PEDOT:PSS layers, compared to the commonly used DMSO-containing ink formulations. We achieve large-area and high-fidelity electronic devices (array of 140 devices) with reproducible electrical performance through inkjet-based 3D printing. Enhanced performance stability is observed under cyclic bending, thermal annealing, UV or IR exposure, offering exciting opportunities for sustainable deposition of PEDOT:PSS for large-area 3D printing and its exploitation in heterostructures and flexible electronics.
[Display omitted] |
---|---|
ISSN: | 2214-8604 2214-7810 |
DOI: | 10.1016/j.addma.2023.103452 |