Remarkable strength-impact toughness conflict in high-strength Al-Mg-Sc-Zr alloy fabricated via laser powder bed fusion additive manufacturing
Laser powder bed fusion (LPBF) of AlMgScZr alloys have a combination of high strength and good ductility, which may apply to damage-tolerant structures. However, there have been only limited studies on the toughness performance of this promising alloy system. In the present work, the impact toughnes...
Gespeichert in:
Veröffentlicht in: | Additive manufacturing 2022-11, Vol.59, p.103093, Article 103093 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser powder bed fusion (LPBF) of AlMgScZr alloys have a combination of high strength and good ductility, which may apply to damage-tolerant structures. However, there have been only limited studies on the toughness performance of this promising alloy system. In the present work, the impact toughness of an LPBF-processed AlMgScZr alloy, which is critical for the application that involves high-strain-rate loading, was systematically investigated using instrumented Charpy impact testing. The results demonstrated that the AB(as-built)-LPBF-processed AlMgScZr alloy had a good combination of yield strength and impact toughness (338 ± 3 MPa, 27.47 ± 1.04 J), which were about 2 and 4 times those of the AC(as-cast)-processed AlMgScZr alloy (160 ± 1 MPa, 6.21 ± 0.66 J). However, post-aging treatment greatly deteriorated the impact toughness. On one hand, the strain-hardening capability of the LPBF-processed AlMgScZr alloy was reduced after post-aging; on the other hand, the coplanar slip associated with the L12 superlattice structure of the secondary Al3(Sc,Zr) phase promoted the intergranular brittle fracture. This resulted in the remarkable strength-impact toughness conflict in the AA(as-aged)-LPBF-processed AlMgScZr alloy (512 ± 2 MPa, 4.27 ± 0.09 J). This study not only provides valuable insights into the dynamic fracture resistance of the LPBF-processed AlMgScZr alloys but also sheds light on the importance of choosing whether to post-age the LPBF-processed AlMgScZr alloy based on service loading conditions. |
---|---|
ISSN: | 2214-8604 2214-7810 |
DOI: | 10.1016/j.addma.2022.103093 |