Process planning for five-axis support free additive manufacturing

Traditionally Additive Manufacturing (AM) is a two-dimensional layer-by-layer material deposition process which requires building the support structures along with the build of the desired model. Removal of the support structures is costly and time-consuming, especially for metal parts. Using a five...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive manufacturing 2020-12, Vol.36, p.101569, Article 101569
Hauptverfasser: Xiao, Xinyi, Joshi, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally Additive Manufacturing (AM) is a two-dimensional layer-by-layer material deposition process which requires building the support structures along with the build of the desired model. Removal of the support structures is costly and time-consuming, especially for metal parts. Using a five-axis deposition machine has the potential to build structures without the need for supports. However, there is a lack of automated process planning software to support the full use of five-axis machines. This paper introduces an automated method that allows reorienting the part during the build using a five-axis machine. The reorientations still allow the part to be built using traditional planar deposition but without the use of supports. This requires that the part be decomposed into sub volumes, such that each sub volume has its build direction and can be built with planar layers without support structures. This paper presents algorithms to determine the sub-volumes, their orientations, and sequence, which form the major components of the process plan for manufacturing. The process plan is generated by sequencing the decomposed volumes while ensuring a lack of local collision with previously deposited volumes. An added benefit of this automated process is the ability to evaluate the feasibility of building the part in a support free manner. This can provide feedback to the designer on the support free manufacturability of the part. Examples illustrating the methodology and establishing the viability of the decomposition strategy are presented to verify the effectiveness of the algorithms.
ISSN:2214-8604
2214-7810
DOI:10.1016/j.addma.2020.101569