Machine learning in additive manufacturing: State-of-the-art and perspectives
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology. However, its broad adoption in industry is still hindered by high entry barriers of design for additive manufacturing (DfAM), limited materials library, various processing defects, and inconsistent product qual...
Gespeichert in:
Veröffentlicht in: | Additive manufacturing 2020-12, Vol.36, p.101538, Article 101538 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology. However, its broad adoption in industry is still hindered by high entry barriers of design for additive manufacturing (DfAM), limited materials library, various processing defects, and inconsistent product quality. In recent years, machine learning (ML) has gained increasing attention in AM due to its unprecedented performance in data tasks such as classification, regression and clustering. This article provides a comprehensive review on the state-of-the-art of ML applications in a variety of AM domains. In the DfAM, ML can be leveraged to output new high-performance metamaterials and optimized topological designs. In AM processing, contemporary ML algorithms can help to optimize process parameters, and conduct examination of powder spreading and in-process defect monitoring. On the production of AM, ML is able to assist practitioners in pre-manufacturing planning, and product quality assessment and control. Moreover, there has been an increasing concern about data security in AM as data breaches could occur with the aid of ML techniques. Lastly, it concludes with a section summarizing the main findings from the literature and providing perspectives on some selected interesting applications of ML in research and development of AM. |
---|---|
ISSN: | 2214-8604 2214-7810 |
DOI: | 10.1016/j.addma.2020.101538 |