Efficiency, accuracy, and transferability of machine learning potentials: Application to dislocations and cracks in iron
Machine learning interatomic potentials (ML-IAPs) enable quantum-accurate, classical molecular dynamics simulations of large systems, beyond reach of density functional theory (DFT). Yet, their efficiency and ability to predict systems larger than DFT supercells are not fully explored, posing a ques...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2024-05, Vol.270, p.119788, Article 119788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning interatomic potentials (ML-IAPs) enable quantum-accurate, classical molecular dynamics simulations of large systems, beyond reach of density functional theory (DFT). Yet, their efficiency and ability to predict systems larger than DFT supercells are not fully explored, posing a question regarding transferability to large-scale simulations with defects (e.g. dislocations, cracks). Here, we apply a three-step validation approach to body-centered-cubic iron. First, accuracy and efficiency are assessed by optimizing ML-IAPs based on four state-of-the-art ML packages. The Pareto front of computational speed versus testing root-mean-square-error (RMSE) is computed. Second, benchmark properties relevant to plasticity and fracture are evaluated. Their relative root-mean-square-error (Q) with respect to DFT is found to correlate with RMSE. Third, transferability of ML-IAPs to dislocations and cracks is investigated by using per-atom model uncertainty quantification. The core structures and Peierls barriers of screw, M111 and three edge dislocations are compared with DFT. Traction–separation curve and critical stress intensity factor (KIc) are also predicted. Cleavage on the pre-existing crack plane is found to be the zero-temperature atomistic fracture mechanism of pure body-centered-cubic iron under mode-I loading, independent of ML package and training database. Quantitative predictions of dislocation glide paths and KIc can be sensitive to database, ML package, cutoff radius, and are limited by DFT accuracy. Our results highlight the importance of validating ML-IAPs by using indicators beyond RMSE. Moreover, significant computational speed-ups can be achieved by using the most efficient ML-IAP package, yet the assessment of the accuracy and transferability should be performed with care.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2024.119788 |