Data-driven optimization of FePt heat-assisted magnetic recording media accelerated by deep learning TEM image segmentation

The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2023-08, Vol.255, p.119039, Article 119039
Hauptverfasser: Kulesh, N., Bolyachkin, A., Suzuki, I., Takahashi, Y.K., Sepehri-Amin, H., Hono, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine that combines a convolutional neural network and machine vision to enable data mining from transmission electron microscopy images of FePt-C nanogranular media. This allowed us to generate a dataset and implement a machine learning optimization model that guides process parameters to achieve the desired nanostructure, i.e., small grain size with unimodal distribution and a large coercivity, which was successfully validated experimentally. This work demonstrates the promise of data-driven design of high-density HAMR media. [Display omitted]
ISSN:1359-6454
DOI:10.1016/j.actamat.2023.119039