Data-driven optimization of FePt heat-assisted magnetic recording media accelerated by deep learning TEM image segmentation
The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine th...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2023-08, Vol.255, p.119039, Article 119039 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, we present a fully automated routine that combines a convolutional neural network and machine vision to enable data mining from transmission electron microscopy images of FePt-C nanogranular media. This allowed us to generate a dataset and implement a machine learning optimization model that guides process parameters to achieve the desired nanostructure, i.e., small grain size with unimodal distribution and a large coercivity, which was successfully validated experimentally. This work demonstrates the promise of data-driven design of high-density HAMR media.
[Display omitted] |
---|---|
ISSN: | 1359-6454 |
DOI: | 10.1016/j.actamat.2023.119039 |