Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications

The highly tunable properties of multi-principal element alloys, commonly known as high-entropy alloys (HEAs), provide a remarkable potential for the development of superior materials for critical structural applications that involve extreme conditions. However, the optimization of the properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2023-01, Vol.242, p.118449, Article 118449
Hauptverfasser: Zhang, Cheng, Yu, Qin, Tang, Yuanbo T., Xu, Mingjie, Wang, Haoren, Zhu, Chaoyi, Ell, Jon, Zhao, Shiteng, MacDonald, Benjamin E., Cao, Penghui, Schoenung, Julie M., Vecchio, Kenneth S., Reed, Roger C., Ritchie, Robert O., Lavernia, Enrique J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The highly tunable properties of multi-principal element alloys, commonly known as high-entropy alloys (HEAs), provide a remarkable potential for the development of superior materials for critical structural applications that involve extreme conditions. However, the optimization of the properties of HEAs has been primarily limited to behavior at either low or high temperatures. Here, we report on a non-equiatomic, heterostructured, high-entropy alloy FeNiCoAlTaB which possesses remarkable combinations of mechanical properties across a wide range of temperatures from 77 K to 1073 K. The current metastable alloy presents good ductility and superior engineering tensile strengths of 2.2 GPa, 1.4 GPa, 800 MPa, and 500 MPa at 77 K, 298 K, 873 K, and 1073 K, respectively. This behavior is achieved by a synergic sequence of individual mechanisms that are activated at different temperatures. The alloy even displays pseudoelasticity at 77 K with an applied load up to 2 GPa. This work provides a methodology for tailoring structural heterogeneity and metastability in the design and fabrication of multifunctional HEAs that will outperform known metals and alloys over a wide range of temperatures. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2022.118449