Ultrastrong and stress corrosion cracking-resistant martensitic steels

This study aims to reveal the atomic-scale effects of tempering on the complex substructures and stress corrosion cracking (SCC) resistance of high-strength martensitic steels. The SCC resistance and strength of boron-doped Fe-0.3C-0.3Si-1.0Mn-1.0Ni-0.5Cr (wt%) martensitic steel increase concurrentl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2022-10, Vol.239, p.118291, Article 118291
Hauptverfasser: Park, Sangeun, Kim, Jung Gi, Jung, Im Doo, Seol, Jae Bok, Sung, Hyokyung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to reveal the atomic-scale effects of tempering on the complex substructures and stress corrosion cracking (SCC) resistance of high-strength martensitic steels. The SCC resistance and strength of boron-doped Fe-0.3C-0.3Si-1.0Mn-1.0Ni-0.5Cr (wt%) martensitic steel increase concurrently without low-temperature tempering. Notably, the degradation of SCC resistance caused by tempering is in contrast with the known effect. To explore this unexpected result, subboundaries inside the martensitic microstructure are investigated via atomic-nano-micro-scale analyses. The strongly segregated carbon at the lath boundaries during tempering is a precursor to the harmful cementite, which acts as severe SCC initiation sites. Eventually, intensive crack grew along the lath boundaries, deteriorating the SCC resistance of the material. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2022.118291