Structural origin of strongly diffused ferroelectric phase transition in Ba(Ti, Zr)O3-based ceramics

A significant broadening of the ferroelectric phase transition is an inherent characteristic of disordered polar systems, such as technologically important materials based on relaxor ferroelectrics. The origins of diffusion of the dielectric maximum are usually associated with chemical and structura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2022-04, Vol.227, p.117734, Article 117734
Hauptverfasser: Talanov, Mikhail V., Bush, Alexander A., Sirotinkin, Vladimir P., Kozlov, Vladislav I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A significant broadening of the ferroelectric phase transition is an inherent characteristic of disordered polar systems, such as technologically important materials based on relaxor ferroelectrics. The origins of diffusion of the dielectric maximum are usually associated with chemical and structural heterogeneity, leading to local deviations of the Curie temperature in polar nanoregions giving rise to relaxor behavior. In this work, based on the results of crystal structure, dielectric, and ferroelectric properties investigation, we report a surprising broadening enhancement of the ferroelectric phase transition in (1-x)BaTi0.95Zr0.05O3-xPbTiO3 ceramics with x = 0.30. The values of its diffuseness parameters are similar to or even exceed those of common relaxor ferroelectrics, even though the studied ceramics does not demonstrate any frequency-dependent shift of dielectric maxima. Symmetry-mode analysis of the atomic displacements in the tetragonal phases provides direct evidence of the concentration-induced crossover between B-site and A-site driven ferroelectricity at x = 0.30. Structure-property correlations between polar distortion amplitudes, dielectric and ferroelectric behavior are observed, suggesting an increase in structural stiffness in the crossover region. This work shows a new structural mechanism of strongly diffused phase transition in ferroelectrics that consists of the interplay between atomic displacements of the A and B cations of the perovskite structure and, in principle, is not associated with the atomic disorder as such. [Display omitted] .
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2022.117734