Uniform approximation of common Gaussian process kernels using equispaced Fourier grids

The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2024-07, Vol.71, p.101640, Article 101640
Hauptverfasser: Barnett, Alex, Greengard, Philip, Rachh, Manas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high efficiency of a recently proposed method for computing with Gaussian processes relies on expanding a (translationally invariant) covariance kernel into complex exponentials, with frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for this approximation for two popular kernels—Matérn and squared exponential—in terms of the grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of Gaussians or modified Bessel functions over various lattices. For the Matérn case, motivated by numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the ill-conditioning of the linear systems arising in such regression problems.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2024.101640