The long-term effects of Δ9-tetrahydrocannabinol on microtubule dynamicity in rats

Studies reported that Δ9-tetrahydrocannabinol (Δ9-THC) is an essential drug as an anti-cancer, neuroprotective, anti-inflammatory, and immune-modulatory agent. However, the mechanism by which Δ9-THC causes these events remains to be elucidated. We attempted to investigate the in vivo studies of Δ9-T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2020-10, Vol.693, p.108574, Article 108574
Hauptverfasser: Gholami, Dariush, Noori, Ali Reza, Mohammadkhani, Mina, Emruzi, Zeinab, Riazi, Gholam Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies reported that Δ9-tetrahydrocannabinol (Δ9-THC) is an essential drug as an anti-cancer, neuroprotective, anti-inflammatory, and immune-modulatory agent. However, the mechanism by which Δ9-THC causes these events remains to be elucidated. We attempted to investigate the in vivo studies of Δ9-THC on brain microtubule dynamicity, and acetylcholinesterase (AChE) activity. The microtubule polymerization, secondary and tertiary structures of α/β-tubulins, as well as the AChE activity, were evaluated in the experimental groups. The significantly lowest optical density and initial rate of polymerization was observed in THC 3 mg/kg, THC 9 mg/kg, and THC 18 mg/kg treated groups. The content of secondary and tertiary structures of α/β-tubulins was significantly affected in treated groups. The AChE activity was significantly lower in treated groups in a dose-dependent manner. These data highlight the microtubule dynamicity as a molecular target for Δ9-THC, which affects memory dysfunction. However, Δ9-THC can be inhibited the AChE activity and provide an improved therapeutics for neurodegenerative diseases. [Display omitted] •Δ9-THC decreases the optical density and initial rate of microtubule polymerization.•Δ9-THC changes secondary and tertiary structures of tubulin dimers.•There is a single stable site of THC- tubulin interaction.•Δ9-THC inhibited the AChE activity.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2020.108574