A topological approach to mapping space signatures
A common approach for describing classes of functions and probability measures on a topological space X is to construct a suitable map Φ from X into a vector space, where linear methods can be applied to address both problems. The case where X is a space of paths [0,1]→Rn and Φ is the path signature...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2025-02, Vol.163, p.102787, Article 102787 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A common approach for describing classes of functions and probability measures on a topological space X is to construct a suitable map Φ from X into a vector space, where linear methods can be applied to address both problems. The case where X is a space of paths [0,1]→Rn and Φ is the path signature map has received much attention in stochastic analysis and related fields. In this article we develop a generalized Φ for the case where X is a space of maps [0,1]d→Rn for any d∈N, and show that the map Φ generalizes many of the desirable algebraic and analytic properties of the path signature to d≥2. The key ingredient to our approach is topological; in particular, our starting point is a generalization of K-T Chen's path space cochain construction to the setting of cubical mapping spaces. |
---|---|
ISSN: | 0196-8858 |
DOI: | 10.1016/j.aam.2024.102787 |