Stereologically adapted Crofton formulae for tensor valuations

The classical Crofton formula explains how intrinsic volumes of a convex body K in n-dimensional Euclidean space can be obtained from integrating a measurement function at sections of K with invariantly moved affine flats. We generalize this idea by constructing stereologically adapted Crofton formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2024-09, Vol.160, p.102754, Article 102754
1. Verfasser: Dare, Emil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Crofton formula explains how intrinsic volumes of a convex body K in n-dimensional Euclidean space can be obtained from integrating a measurement function at sections of K with invariantly moved affine flats. We generalize this idea by constructing stereologically adapted Crofton formulae for translation invariant Minkowski tensors, expressing a prescribed tensor valuation as an invariant integral of a measurement function of section profiles with flats. The measurement functions are weighed sums of powers of the metric tensor times Minkowski valuations. The weights are determined explicitly from known Crofton formulae using Zeilberger's algorithm. The main result is an exhaustive set of measurement functions where the invariant integration is over flats. With the main result at hand, a Blaschke-Petkantschin formula allows us to establish new measurement functions valid when the invariant integration over flats is replaced by an invariant integration over subspaces containing a fixed subspace of lower dimension. Likewise, a stereologically adapted Crofton formula valid in the scheme of vertical sections is constructed. Only some special cases of this result have been stated explicitly before, with even the three-dimensional case yielding a new stereological formula. Here, we obtain new vertical section formulae for the surface tensors of even rank.
ISSN:0196-8858
DOI:10.1016/j.aam.2024.102754