Stratified simple homotopy type: Theory and computation
Generalizing the idea of elementary simplicial collapses and expansions in classical simple homotopy theory to a stratified setting, we find local combinatorial transformations on stratified simplicial complexes that leave the global stratified homotopy type invariant. In particular, we obtain the n...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2024-09, Vol.160, p.102753, Article 102753 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalizing the idea of elementary simplicial collapses and expansions in classical simple homotopy theory to a stratified setting, we find local combinatorial transformations on stratified simplicial complexes that leave the global stratified homotopy type invariant. In particular, we obtain the notions of stratified formal deformations generalizing J. H. C. Whitehead's formal deformations. We implement the algorithmic execution of such transformations and the computation of intersection homology to illustrate the behavior of stratified simple homotopy equivalences on Vietoris-Rips type complexes associated to point sets sampled near given, possibly singular, spaces. |
---|---|
ISSN: | 0196-8858 |
DOI: | 10.1016/j.aam.2024.102753 |