Substitution-dynamics and invariant measures for infinite alphabet-path space
We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. In this setting of Borel dynamics, using a statio...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2024-05, Vol.156, p.102687, Article 102687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. In this setting of Borel dynamics, using a stationary generalized Bratteli-Vershik model, we provide a new and canonical construction of shift-invariant measures (both finite and infinite) for the associated class of subshifts. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2024.102687 |