Substitution-dynamics and invariant measures for infinite alphabet-path space

We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. In this setting of Borel dynamics, using a statio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2024-05, Vol.156, p.102687, Article 102687
Hauptverfasser: Bezuglyi, Sergey, Jorgensen, Palle E.T., Sanadhya, Shrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study substitutions on a countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. In this setting of Borel dynamics, using a stationary generalized Bratteli-Vershik model, we provide a new and canonical construction of shift-invariant measures (both finite and infinite) for the associated class of subshifts.
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2024.102687