On semilinear sets and asymptotic approximate groups

Let G be any group and A be a non-empty subset of G. The h-fold product set of A is defined asAh:={a1⋅a2⋯ah:a1,…,ah∈A}. Nathanson considered the concept of an asymptotic approximate group. Let r,l∈Z>0. The set A is said to be an (r,l)-approximate group in G if there exists a subset X in G such th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied mathematics 2022-06, Vol.137, p.102330, Article 102330
Hauptverfasser: Biswas, Arindam, Moens, Wolfgang Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be any group and A be a non-empty subset of G. The h-fold product set of A is defined asAh:={a1⋅a2⋯ah:a1,…,ah∈A}. Nathanson considered the concept of an asymptotic approximate group. Let r,l∈Z>0. The set A is said to be an (r,l)-approximate group in G if there exists a subset X in G such that |X|⩽l and Ar⊆XA. The set A is an asymptotic (r,l)-approximate group if the product set Ah is an (r,l)-approximate group for all sufficiently large h. Recently, Nathanson showed that every finite subset A of an abelian group is an asymptotic (r,l′)-approximate group (with the constant l′ explicitly depending on r and A). In this article, our motivations are three-fold:(1)We give an alternate proof of Nathanson's result.(2)From the alternate proof we deduce an improvement in the bound on the explicit constant l′.(3)We generalise the result and show that, in an arbitrary abelian group G, the union of k (unbounded) generalised arithmetic progressions is an asymptotic (r,(4rk)k)-approximate group.
ISSN:0196-8858
1090-2074
DOI:10.1016/j.aam.2022.102330