The functional form of the dual mixed volume
This paper is to generalize the dual mixed volume of star bodies to that of dual quasi-concave functions by extending the radial Minkowski linear combination of star bodies to that of dual quasi-concave functions. We attempt to build up some functional versions of notions and inequalities from the d...
Gespeichert in:
Veröffentlicht in: | Advances in applied mathematics 2022-03, Vol.134, p.102305, Article 102305 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is to generalize the dual mixed volume of star bodies to that of dual quasi-concave functions by extending the radial Minkowski linear combination of star bodies to that of dual quasi-concave functions. We attempt to build up some functional versions of notions and inequalities from the dual Brunn-Minkowski theory. In particular, both the dual mixed Brunn-Minkowski inequality of star bodies and the dual Aleksandrov Fenchel inequality of star bodies are generalized to that of dual quasi-concave functions. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1016/j.aam.2021.102305 |