The momentum operator on a union of intervals and the Fuglede conjecture
The purpose of the present paper is to place a number of geometric (and hands-on) configurations relating to spectrum and geometry inside a general framework for the Fuglede conjecture . Note that in its general form, the Fuglede conjecture concerns general Borel sets Ω in a fixed number of dimensio...
Gespeichert in:
Veröffentlicht in: | Sampling theory, signal processing, and data analysis signal processing, and data analysis, 2023-12, Vol.21 (2), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of the present paper is to place a number of geometric (and hands-on) configurations relating to spectrum and geometry inside a general framework for the
Fuglede conjecture
. Note that in its general form, the Fuglede conjecture concerns general Borel sets
Ω
in a fixed number of dimensions
d
such that
Ω
has finite positive Lebesgue measure. The conjecture proposes a correspondence between two properties for
Ω
, one takes the form of spectrum, while the other refers to a translation-tiling property. We focus here on the case of dimension one, and the connections between the Fuglede conjecture and properties of the self-adjoint extensions of the momentum operator
1
2
π
i
d
dx
, realized in
L
2
of a union of intervals. |
---|---|
ISSN: | 2730-5716 2730-5724 |
DOI: | 10.1007/s43670-023-00072-8 |