Enhancing translation efficiency and exploring constraints in high-level 4-hydroxyvaleric acid production from levulinic acid in Escherichia coli

4-Hydroxyvaleric acid (4-HV) holds promise as a sustainable monomer for biodegradable polyesters and liquid transportation fuels. This study achieved high-level 4-HV production from levulinic acid using an antibiotic-free, substrate-inducible system in Escherichia coli . Enzymes involved in the conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Systems Microbiology and Biomanufacturing 2024-07, Vol.4 (3), p.1130-1139
Hauptverfasser: Sathesh-Prabu, Chandran, Tiwari, Rameshwar, Lee, Sung Kuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4-Hydroxyvaleric acid (4-HV) holds promise as a sustainable monomer for biodegradable polyesters and liquid transportation fuels. This study achieved high-level 4-HV production from levulinic acid using an antibiotic-free, substrate-inducible system in Escherichia coli . Enzymes involved in the conversion of levulinic acid to 4-HV were expressed with a bicistronic design of ribosome binding sites. The engineered strain demonstrated a 28% higher productivity compared to its counterpart, reaching a significant concentration of 107 g/L 4-HV with a production rate of 4.5 g/L/h and a molar conversion of 95% from levulinic acid in fed-batch cultivation. Recombinant cells from the initial cultivation were reused for a second round of biotransformation, demonstrating 73% efficiency of fresh cells. The study identified specific factors contributing to decreased system efficiency, including medium conditions, increased ionic strength, and high product concentration. Overall, the reported system and our findings hold significant potential for cost-effective microbial production of 4-HV at scale from levulinic acid.
ISSN:2662-7655
2662-7663
DOI:10.1007/s43393-024-00258-8