On a two-sided Guionnet–Jones–Shlyakhtenko construction and interpolated free group factors arising from finite groups

We formulate a two-sided Guionnet–Jones–Shlyakhtenko-like construction for a subfactor planar algebra P to define two sequences of tracial, unital associative algebras which we show are isomorphic and on completing which, we obtain a sequence M k of von Neumann algebras. Further, when P is the plana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Banach journal of mathematical analysis 2025, Vol.19 (1), Article 12
Hauptverfasser: Jayakumar, R., Kodiyalam, Vijay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate a two-sided Guionnet–Jones–Shlyakhtenko-like construction for a subfactor planar algebra P to define two sequences of tracial, unital associative algebras which we show are isomorphic and on completing which, we obtain a sequence M k of von Neumann algebras. Further, when P is the planar algebra of a finite group, we employ free probability techniques to explicitly identify M 1 and M 2 as interpolated free group factors.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-024-00399-x