Convergence of power sequences of operators via their stability

This paper is concerned with the convergence of power sequences and stability of Hilbert space operators, where “convergence” and “stability” are considered with respect to weak, strong and norm topologies. It is proved that an operator has a convergent power sequence if and only if it is a (not nec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Banach journal of mathematical analysis 2024-10, Vol.18 (4), Article 62
Hauptverfasser: Jabłoński, Zenon Jan, Jung, Il Bong, Kubrusly, Carlos, Stochel, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the convergence of power sequences and stability of Hilbert space operators, where “convergence” and “stability” are considered with respect to weak, strong and norm topologies. It is proved that an operator has a convergent power sequence if and only if it is a (not necessarily orthogonal) direct sum of an identity operator and a stable operator. This reduces the issue of convergence of the power sequence of an operator T to the study of stability of T . The question of when the limit of the power sequence is an orthogonal projection is investigated. Among operators sharing this property are hyponormal and contractive ones. In particular, a hyponormal or a contractive operator with no identity part is stable if and only if its power sequence is convergent. In turn, a unitary operator has a weakly convergent power sequence if and only if its singular-continuous part is weakly stable and its singular-discrete part is the identity. Characterizations of the convergence of power sequences and stability of subnormal operators are given in terms of semispectral measures.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-024-00371-9