The skew commutators of Toeplitz operators or Hankel operators on Hardy spaces

Let A and B be two bounded linear operators on a Hilbert space. B is called the skew commutator of A if ∗ [ A , B ] = A B - B A ∗ = 0 . In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Banach journal of mathematical analysis 2024-04, Vol.18 (2), Article 21
Hauptverfasser: Li, Yongning, Zheng, Hanyi, Ding, Xuanhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A and B be two bounded linear operators on a Hilbert space. B is called the skew commutator of A if ∗ [ A , B ] = A B - B A ∗ = 0 . In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Hardy space is a skew commutator of a Toeplitz operator. Moreover, we also obtain a necessary and sufficient condition for the product of a Hankel operator and a Toeplitz operator to be self-adjoint on the Hardy space.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-024-00330-4