The skew commutators of Toeplitz operators or Hankel operators on Hardy spaces
Let A and B be two bounded linear operators on a Hilbert space. B is called the skew commutator of A if ∗ [ A , B ] = A B - B A ∗ = 0 . In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Ha...
Gespeichert in:
Veröffentlicht in: | Banach journal of mathematical analysis 2024-04, Vol.18 (2), Article 21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
and
B
be two bounded linear operators on a Hilbert space.
B
is called the skew commutator of
A
if
∗
[
A
,
B
]
=
A
B
-
B
A
∗
=
0
.
In this paper, we completely characterize when a Toeplitz operator on the Hardy space is a skew commutator of a Hankel operator and when a Hankel operator on the Hardy space is a skew commutator of a Toeplitz operator. Moreover, we also obtain a necessary and sufficient condition for the product of a Hankel operator and a Toeplitz operator to be self-adjoint on the Hardy space. |
---|---|
ISSN: | 2662-2033 1735-8787 |
DOI: | 10.1007/s43037-024-00330-4 |