On symmetric points with respect to the numerical radius norm

We study left symmetric and right symmetric points with respect to the numerical radius orthogonality (respectively, known as nr-left symmetric operators and nr-right symmetric operators) in the setting of both Hilbert spaces and Banach spaces. We prove that a bounded linear operator T on a complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Banach journal of mathematical analysis 2023-10, Vol.17 (4), Article 67
Hauptverfasser: Ghosh, Souvik, Mal, Arpita, Paul, Kallol, Sain, Debmalya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study left symmetric and right symmetric points with respect to the numerical radius orthogonality (respectively, known as nr-left symmetric operators and nr-right symmetric operators) in the setting of both Hilbert spaces and Banach spaces. We prove that a bounded linear operator T on a complex Hilbert space is nr-left symmetric if and only if T is the zero operator, provided that T attains its numerical radius. We also prove that a nonzero compact normal operator on an infinite-dimensional complex Hilbert space cannot be nr-right symmetric. We then study nr-left symmetry and nr-right symmetry in the setting of Banach spaces and obtain separate necessary and sufficient conditions for the same. Next, we obtain complete characterizations of nr-left and nr-right symmetric operators on some particular Banach spaces.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-023-00290-1