On symmetric points with respect to the numerical radius norm
We study left symmetric and right symmetric points with respect to the numerical radius orthogonality (respectively, known as nr-left symmetric operators and nr-right symmetric operators) in the setting of both Hilbert spaces and Banach spaces. We prove that a bounded linear operator T on a complex...
Gespeichert in:
Veröffentlicht in: | Banach journal of mathematical analysis 2023-10, Vol.17 (4), Article 67 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study left symmetric and right symmetric points with respect to the numerical radius orthogonality (respectively, known as nr-left symmetric operators and nr-right symmetric operators) in the setting of both Hilbert spaces and Banach spaces. We prove that a bounded linear operator
T
on a complex Hilbert space is nr-left symmetric if and only if
T
is the zero operator, provided that
T
attains its numerical radius. We also prove that a nonzero compact normal operator on an infinite-dimensional complex Hilbert space cannot be nr-right symmetric. We then study nr-left symmetry and nr-right symmetry in the setting of Banach spaces and obtain separate necessary and sufficient conditions for the same. Next, we obtain complete characterizations of nr-left and nr-right symmetric operators on some particular Banach spaces. |
---|---|
ISSN: | 2662-2033 1735-8787 |
DOI: | 10.1007/s43037-023-00290-1 |