Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces
Let μ be a positive Borel measure on the interval [0, 1). For β > 0 , the generalized Hankel matrix H μ , β = ( μ n , k , β ) n , k ≥ 0 with entries μ n , k , β = ∫ [ 0.1 ) Γ ( n + β ) n ! Γ ( β ) t n + k d μ ( t ) induces formally the operator H μ , β ( f ) ( z ) = ∑ n = 0 ∞ ∑ k = 0 ∞ μ n , k ,...
Gespeichert in:
Veröffentlicht in: | Banach journal of mathematical analysis 2023-07, Vol.17 (3), Article 38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
μ
be a positive Borel measure on the interval [0, 1). For
β
>
0
,
the generalized Hankel matrix
H
μ
,
β
=
(
μ
n
,
k
,
β
)
n
,
k
≥
0
with entries
μ
n
,
k
,
β
=
∫
[
0.1
)
Γ
(
n
+
β
)
n
!
Γ
(
β
)
t
n
+
k
d
μ
(
t
)
induces formally the operator
H
μ
,
β
(
f
)
(
z
)
=
∑
n
=
0
∞
∑
k
=
0
∞
μ
n
,
k
,
β
a
k
z
n
,
on the space of all analytic function
f
(
z
)
=
∑
k
=
0
∞
a
k
z
n
in the unit disk
D
.
In this paper, we characterize those positive Borel measures on [0, 1) such that
H
μ
,
β
(
f
)
(
z
)
=
∫
[
0
,
1
)
f
(
t
)
(
1
-
t
z
)
β
d
μ
(
t
)
for all
f
in the weighted Bergman spaces
A
α
p
(
0
<
p
<
∞
,
α
>
-
1
)
,
and among them, we describe those for which
H
μ
,
β
(
β
>
0
)
is a bounded (resp., compact) operator on weighted Bergman spaces
A
α
p
and Dirichlet spaces
D
α
p
. |
---|---|
ISSN: | 2662-2033 1735-8787 |
DOI: | 10.1007/s43037-023-00268-z |