Self-adjoint, unitary, and isometric weighted composition operators on quaternionic Fock space

The aim of this paper is to characterize several important classical properties, such as self-adjointness, unitarity, invertibility, isometry, and involution of weighted composition operators acting on the quaternionic Fock spaces of entire slice regular functions. We particularly show that the unit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Banach journal of mathematical analysis 2023-04, Vol.17 (2), Article 24
Hauptverfasser: Liu, Meicheng, Liang, Yuxia, Lian, Pan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to characterize several important classical properties, such as self-adjointness, unitarity, invertibility, isometry, and involution of weighted composition operators acting on the quaternionic Fock spaces of entire slice regular functions. We particularly show that the unitarity and co-isometry are equivalent for bounded quanternionic weighted composition operators, which are new even on the ordinary complex Fock space.
ISSN:2662-2033
1735-8787
DOI:10.1007/s43037-023-00252-7