Norm inequalities for hypercontractive quasinormal operators and related higher order Sylvester–Stein equations in ideals of compact operators
Amongst others, for N ∈ N , some Q ∗ symmetrically norming (s.n.) functions Ψ and N -hypercontractive operators C and D ∗ , such that at least one of C , D ∗ is quasinormal and for some bounded Hilbert space operator X , we have proved | | ( ∑ n = 0 N ( - 1 ) n N n C ∗ n C n ) 1 2 ( X - ∑ K = 0 N -...
Gespeichert in:
Veröffentlicht in: | Banach journal of mathematical analysis 2023-04, Vol.17 (2), Article 37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Amongst others, for
N
∈
N
,
some
Q
∗
symmetrically norming (s.n.) functions
Ψ
and
N
-hypercontractive operators
C
and
D
∗
,
such that at least one of
C
,
D
∗
is quasinormal and
for some bounded Hilbert space operator
X
, we have proved
|
|
(
∑
n
=
0
N
(
-
1
)
n
N
n
C
∗
n
C
n
)
1
2
(
X
-
∑
K
=
0
N
-
1
n
K
C
n
--
K
(
∑
i
=
0
K
(
-
1
)
i
K
i
C
i
X
D
i
)
D
n
--
K
)
×
(
∑
n
=
0
N
(
-
1
)
n
N
n
D
n
D
∗
n
)
1
2
|
|
Ψ
⩽
|
|
(
I
-
A
C
)
1
2
(
∑
n
=
0
N
(
-
1
)
n
N
n
C
n
X
D
n
)
(
I
-
A
D
∗
)
1
2
|
|
Ψ
⩽
|
|
∑
n
=
0
N
(
-
1
)
n
N
n
C
n
X
D
n
|
|
Ψ
,
where
A
C
=
def
s
lim
n
→
∞
C
∗
n
C
n
and
A
D
∗
=
def
s
lim
n
→
∞
D
n
D
∗
n
.
Under the additional convergence conditions, this implies
|
|
(
∑
n
=
0
N
(
-
1
)
n
N
n
C
∗
n
C
n
)
1
2
X
(
∑
n
=
0
N
(
-
1
)
n
N
n
D
n
D
∗
n
)
1
2
|
|
Ψ
⩽
|
|
∑
n
=
0
N
(
-
1
)
n
N
n
C
n
X
D
n
|
|
Ψ
.
Above,
denotes the ideal of compact operators associated with the s.n. function
Ψ
. |
---|---|
ISSN: | 2662-2033 1735-8787 |
DOI: | 10.1007/s43037-023-00247-4 |